Sunday, December 22, 2013

Darwin’s Paradox Revisited: Compassion and Evolution

Several years ago, when I started this blog in 2007, I wrote an article that explored the term “Darwin’s Paradox”—it’s not just the title of my science fiction thriller Darwin's Paradox released that year by Dragon Moon Press—but  a term coined by scientists to describe the paradoxical phenomenon exhibited by coral reefs.

Defying The Laws of Thermodynamics

Darwin described coral reefs as oases in the desert of the ocean. Coral reefs comprise one of the richest ecosystems on Earth, in apparent violation of the laws of thermodynamics (high productivity in a low-productivity environment). Productivity ranges from 50 to 250 times more than the surrounding ocean. How do they thrive in crystal-clear water, largely devoid of nutrients? Part of the answer lies in the coral’s efficiency in recycling nutrients like nitrate and phosphate.

Firstly, the rough coral surface amplifies water turbulence at a microscopic level, disrupting the boundary layer that usually settles on objects under water and lets the coral “hoover” up the sparse nutrients. I stumbled upon a similar phenomenon during my grad work on temperate streams and published my serendipitous discovery in the journal Hydrobiologia. I was researching how periphyton (attached “algae”) colonized submerged glass slides and observed that the community preferred the edges of the slides because the micro-turbulence there provided more opportunity for attachment and nutrition.

Secondly, lots of corals also function symbiotically with specialized algae (called zooxanthelae), which provide the coral with food (through photosynthesis) and, in turn, get food from the wastes created by the coral.  

Can the science of symbiosis teach us about another Darwin’s Paradox?

The Evolution of Compassion

In a September 2013 article in the Jewish World Review, Boston Globe reporter Jeff Jacoby wrote:

“Charles Darwin struggled with a paradox: If evolution is a struggle for survival, how could generosity, compassion, and other altruistic virtues have spread through natural selection? Darwin could see the clear evolutionary benefit to groups that inculcated ethical values in their members. Imagine two competing primitive tribes, equally matched — except that ‘one tribe included a great number of courageous, sympathetic, and faithful members, who were always ready to warn each other of danger, [and] to aid and defend each other.’ (Darwin, “The Descent of Man”). There was little doubt that tribes highly endowed with such virtues ‘would spread and be victorious over other tribes.’”

“How did any tribe evolve such ethical qualities in the first place?” asks Jacoby. Brave individuals who risked their lives for others "would on average perish in larger numbers than other men." It hardly seemed possible, Darwin conceded, that, "such virtues … could be increased through natural selection, that is, by the survival of the fittest." So, how did it…and why?

Jacoby quotes Sir Jonathan Sacks, Britain’s Orthodox chief rabbi, who pointed to "the central drama of civilization: Biological evolution favors individuals,” says Sacks. “But cultural evolution favors groups.… Selfishness benefits individuals [only in the short-term and only in a limited way—my comment], but it is [ultimately] disastrous to groups, and it is only as members of a group that individuals can survive at all."

Jacoby describes the vast literature in evolutionary psychology and sociobiology that have demonstrated humanity’s hard-wired moral capacity. “We are born with an aptitude for empathy and fairness,” said Jacoby, citing recent neurological experiments that have demonstrated that an act of generosity triggers a pleasurable response in the brain.

Abraham Lincoln summarized it in seven words: “When I do good, I feel good.”  Psychologists call it the “helper’s high”. Neuroscientists and behavioral scientists are demonstrating unequivocally the benefits of altruism to our health and happiness. Scientists have designed experiments that actually trace altruism—and the pleasure we gain from it—to specific regions and systems in the brain. Key studies now provide striking evidence that our brains are wired for altruism. 

The Social Brain and the Seat of Compassion  

In a study published in the Proceedings of the National Academy of Sciences (Moll et al, 2006), a team of neuroscientists lead by Dr. Jordan Grafman, reported that, “when people made the decision to donate to what they felt was a worthy organization, parts of the midbrain lit up—the same region that controls cravings for food and sex.” The brain experiences a pleasurable response when we engage in good deeds that benefit others. 

Dr. Grafman found that the subgenual area in the frontal lobe near the midpoint of the brain was also strongly active when his study subjects made the decision to give to charity. The area houses many receptors for oxytocin, a hormone that promotes social bonding. “The finding suggests that altruism and social relationships are intimately connected—in part, it may be our reliance on the benefits of strong interpersonal connections that motivates us to behave unselfishly,” reports Elizabeth Svoboda in the WallStreet Journal. The team also found that the nucleus accumbens, which contains neurons that release the pleasure chemical dopamine, was triggered when a person chose to help another.

A 2007 study headed by neuroscientist Scott Huettel and reported in Nature Neuroscience (Tankersley, et al., 2007) connects altruism to the posterior superior temporal cortex (pSTC), an area in the upper rear of the brain that lets us perceive goal-directed actions by someone or something else. Results suggest that altruism depends on, and may have evolved from, the brain’s ability to perform the low-level perceptual task of attributing meaning and motive in the actions of others.

"Our findings are consistent with a theory that some aspects of altruism arose out of a system for perceiving the intentions and goals of others," said Dr. Huettel. "To be altruistic, you need to see that the people you’re helping have goals, and that your actions will have consequences for them."

Research led by Michael Platt reported in Nature Neuroscience in 2012, showed that the anterior cingulate gyrus (ACCg) is an important nexus for the computation of shared experience and social reward. That same year researchers at Mount Sinai School of Medicine in New York published research in the journal Brain that suggested that the anterior insular cortex is the activity centre of human empathy.

I find it both interesting and exciting that these studies link different brain regions to altruistic and compassionate behavior. “There are certain to be multiple mechanism that contribute to altruism, both in individuals and over evolutionary time,” added Huettel. This is the nature of the brain, whether we look at intelligence, motivation or physical characteristics. And I am convinced that we will someday find that many other areas--if not the entire area--of the brain are involved. Moreover, researchers have shown that engaging--or even witnessing--generous acts can reduce stress, increase immunity (e.g., increased antibody levels), and longevity.

Emiliana Simon-Thomas, science director for the Greater Good Science Center at the University of California, Berkeley, explains the chemical activity that happens in our heads when we commit acts of altruism. “There are multiple reward systems that have been tied to pleasurable feelings when people help others or contribute to the well being of the people around them,” she notes. These reward systems are comprised of three main chemicals that are released when we commit an act of kindness and feel pleasure: Dopamine, Oxytocin and Serotonin. According to Simon-Thomas, Dopamine is most closely related to hedonic pleasure — or pleasure derived from self; oxytocin is tied to more social pleasure — especially with regard to physical contact; and serotonin is implicated in a more broad mood state. “All three of these, again, are sort of intersecting and interacting, and depending on the context that you’re in, represent feelings of pleasure in different context,” she explains. “All these systems are activating and parallel, and sort of influencing one another as you go through life.” So when I do a good deed, I am rewarding myself with a cocktail of wonder drugs that please me and make me smile.

So, what I’ve known since I was a child is now proven: doing good deeds is mutually beneficial to the giver and the receiver.

Altruism in All Beings

The notion that all aspects of life on this planet—not just humanity—have the capacity to act altruistically remains controversial—even among professional scientists and researchers. We are not unique in experiencing or practicing altruism, in acting altruistically and benefiting from our own altruistic acts. It is however a matter of perspective, bias and open-mindedness.

Many examples of altruistic behavior and empathy exist in the rest of the living world on our planet (see my article here on Alien on altruism in animals).

Nature’s Heroes

Scientists have been demonstrating for years that cooperation among organisms and communities and the act of pure altruism (not reciprocal altruism or kin/group selection) is, in fact, more common in Nature than most of us realize. Valid examples of true altruism in the wild in many species exist. The key here is “in the wild”—not in captivity, where inherent behavior is often modified (see my article “The SamaritanParadox Revisited: The Karma Ran Over the Dogma”).

Despite the overwhelming evidence for altruism in every aspect of our world, some researchers continue to design experiments and then draw sweeping conclusions based on animals in captivity to suggest that only humanity possesses the ability to behave altruistically—and then again only by social-instruction (aka “the Selfish Gene” of Richard Dawkins vs. the “Social Gene” of Lynn Margulis).

Examples of altruism abound and range among mammals, birds, invertebrates and even Protista. Some examples include: dogs, cats, ducks, squirrels, wolves, mongooses, Meer cats, baboons, chimpanzees, vampire bats, dolphins, walruses, lemurs, African buffalo—to name a few.

Another example is the Vervet monkey. This species has evolved a complex community that fosters the existence of an altruistic individual: the crier monkey. Vervet monkeys give alarm calls to warn fellow monkeys of the presence of predators, even though by doing so they attract attention to themselves and increase their chance of being attacked. Biologists argue that the group that contains a high proportion of alarm-calling monkeys will have a survival advantage over a group containing a lower proportion, thereby encouraging this trait to continue and evolve among individuals. The Vervet monkey crier is Nature’s Hero. And Nature’s heroes are our real altruists.

de Waal explained that “evolution favors animals that assist each other if by doing so they achieve long-term benefits of greater value than the benefits derived from going it alone and competing with others” (de Waal 2006). The prevalent phenomenon of altruism is Nature’s answer to the Prisoner’s Dilemma.

“Empathy evolved in animals as the main ... mechanism for [individually] directed altruism," said deWaal. And it is empathy—not self-interest—that “causes altruism to be dispensed in accordance with predictions from kin selection and reciprocal altruism theory.” deWaal further proposed that the scientific community has become polarized between evolutionary biologists on the one side, and, on the other, a discrete group of economists and anthropologists that “has invested heavily in the idea of strong reciprocity,” which demands discontinuity between humans and all other animals.

“One of the most striking consequences of the study of animal behavior,” says anthropologist Robert Sapolsky, “is the rethinking … of what it is to be human.” He notes that, “a number of realms, traditionally thought to define our humanity, have now been shown to be shared, at least partially, with nonhuman species.” (Sapolsky 2006). This makes some of us uncomfortable. To some, it threatens to make us less special. The corollary is that this demonstrates that we possess intrinsic virtue, not something “painted” on through cultural teaching or diligent personal effort. Of course, it also means that all other beings possess intrinsic value too. In the final analysis, what we generally “know” is colored by what we believe and want to continue believing.

Universal Altruism and Gaia

What does all this mean? Does the very existence of altruism demonstrate the connectivity of all life on Earth. Let’s not stop there. Does the grace of altruism reflect a fractal cosmos imbued with meaning and intent? Was it the grace of altruism that allowed it all to happen in the first place? Don’t we all come from grace?

Despite struggles with acceptance for some of us, we are emerging enlightened to the fractal existence of grace and altruism embedded in the very nature and intentions of our universe.

I come full circle to my book Darwin’s Paradox, a tale of fractal intelligence and universal cooperation. A tale of emerging awareness of Self and Other as One…Evolution through cooperation… Creative DNA…Manifestation through thought and intent…Self-organization and synchronicity…A hero’s journey…and coming Home…

In this season of gratitude, we celebrate altruism in giving and in receiving graciously.

Merry Christmas!

Links / Books of Interest: 2011. “Altruism: the Helper’s High”.

Atwood, Margaret. 2009. "Dept: Not Just A Four Letter Word". Zoomer. March, 2009 (

Centre for Compassion and Altruism Research and Education, Stanford School of Medicine:

Jacoby, Jeff. 2013. “Darwin’s conundrum: Where does compassion come from?”

Ridley, Matt. 1998. The Origins of Virtue: Human Instincts and the Evolution of Cooperation. Penguin Books, 304pp.

Svoboda, Elizabeth. August 31, 2013. “Hard-Wired for Giving” in The Wall Street Journal;

Svoboda, Elizabeth. 2013. “What Makes a Hero? The Surprising Science of Selflessness” Current. 240 pp.

Munteanu, Nina. Aug, 2010. “The Samaritan Paradox Revisited: The Karma Ran Over the Dogma” in The Alien Next Door;

Munteanu, Nina. June, 2010. “What Altruism in Animals can Teach Us About Ourselves” in The Alien Next Door; 

Munteanu, Nina. March, 2010. “Gaia versus Medea: A Case for Altruism” in The Alien Next Door;

Munteanu, Nina. Feb, 2009. “Margaret Atwood’s Wise Words About Dept & Altruism…A Portrait of the Artist as a Real Hero” in The Alien Next Door;

Munteanu, Nina. August, 2007. “Is James Bond an Altruist?—Part 2” in The Alien Next Door;

Nina Munteanu. August, 2007. “Co-evolution: Cooperation & Agressive Symbiosis” in The Alien Next Door;

Nina Munteanu. July, 2007. “Altruism at the Heart of True Happiness” in The Alien Next Door;

Ridley, Matt. 1998. “The Origins of Virtue: Human Instincts and the Evolution of Cooperation.” Penguin Books. 304 pp.

References for Altruism in All Animals:

Bradley, Brenda. 1999. "Levels of Selection, Altruism, and Primate Behavior." The Quarterly Review of Biology, 74(2):171-194.

De Waal, Frans, with Robert Wright, Christine Korsgaard, Philip Kitcher, and Peter Singer. 2006. “Primates and Philosophers: How Morality Evolved”. Princeton: Princeton University Press.

Goodall, Jane. 1990 Through A Window: My Thirty Years with the Chimpanzees of Gombe. Boston: Houghton Mifflin.

Moll, Jorge, Frank Krueger, Roland Zahn, Matteo Pardini, Ricardo de Oliveira-Souza, and Jordan Grafman. 2006. “Human fronto-mesolimbic networks guide decisions about charitable donation.” In: Proc. Natl. Acad. Sci., USA, 103(42): 15623-15628.

Sapolsky, Robert M. 2006. "Social Cultures Among Nonhuman Primates." Current Anthropology, 47(4):641-656.

Svoboda, Elizabeth. 2013. “What Makes a Hero? The Surprising Science of Selfishness.” Current.

Tankersley D et al.  2007. "Altruism is Associated with an Increased Response to Agency."  Nature Neuroscience, February 2007, Vol. 10(2), pp. 150-151.

Warneken, F. & Tomasello, M. 2006. “Altruistic Helping In Human Infants and Young Chimpanzees.” Science, 311, 1301–1303.

Warneken, F., Hare, B., Melis, A. P., Hanus, D. & Tomasello, M. 2007. “ Spontaneous Altruism By Chimpanzees and Young Children.” PloS Biology, 5(7), e184.

de Waal, F. B. M. 2008. “Putting the Altruism Back Into Altruism: The Evolution of Empathy.” Annu. Rev. Psychol., 59, 279–300.

de Waal, F. B. M., Leimgruber, K. & Greenberg, A. R. 2008. “Giving Is Self-rewarding for Monkeys.” Proc. Natl. Acad. Sci., USA, 105, 13685–13689.

Nina Munteanu is an ecologist and internationally published author of novels, short stories and essays. She coaches writers and teaches writing at George Brown College and the University of Toronto. For more about Nina’s coaching & workshops visit Visit for more about her writing.